5,123 research outputs found

    Signals of new physics in global event properties in pp collisions in the TeV energy domain: rapidity intervals

    Full text link
    The study of possible new physics signals in global event properties in pp collisions in the TeV energy domain is extended from full phase-space to rapidity intervals experimentally accessible at LHC. The elbow structure in the total multiplicity distribution predicted in full phase-space is clearly present also in restricted rapidity intervals, leading to very strong charged particle correlations. It is also found that energy densities comparable to those reached in heavy ion collisions at RHIC could be attained in pp collisions at LHC.Comment: 10 pages, 4 figure

    On signals of new physics in global event properties in pp collisions in the TeV energy domain

    Full text link
    In the framework of the weighted superposition mechanism of different classes of minimum bias events (or substructures), described by the negative binomial multiplicity distribution, in possible scenarios for pp collisions in the TeV energy domain, we explore global properties of an eventual new class of events, characterised by high hadron and clan densities, to be added to the soft (without minijets) and semihard (with minijets) ones. It turns out that the main signal of the mentioned new physical expectations at 14 TeV c.m. energy would be an ``elbow structure'' in the tail of the total charged particle multiplicity distribution in complete disagreement with the second shoulder structure predicted by Pythia Monte Carlo calculations: a challenging problem for new experimental work.Comment: 14 pages, 6 ps figures include

    On Statistical Mechanics Developments of Clan Concept in Multiparticle Production

    Get PDF
    Clan concept has been introduced in multiparticle dynamics in order to interpret the wide occurrence of negative binomial (NB) regularity in n-charged particle multiplicity distributions (MDs) in various high energy collisions. The centrality of clan concept led to the attempt to justify its occurrence within a statistical model of clan formation and evolution. In this framework all thermodynamical potentials have been explicitly calculated in terms of NB parameters. Interestingly it was found that NB parameter k corresponds to the one particle canonical partition function. The goal of this paper is to explore a possible temperature and volume dependence of parameter k in various classes of events in high energy hadron-hadron collisions. It is shown that the existence of a phase transition at parton level from the ideal clan gas associated to the semihard component with k>1 to the ideal clan gas of the hard component with k<1 implies a discontinuity in the average number of particles at hadron level.Comment: 20 pages, latex, no figures; v2: the description of the framework has been considerably expanded, and the main body has been reorganized for clarit

    Clan structure analysis and new physics signals in pp collisions at LHC

    Full text link
    The study of possible new physics signals in global event properties in pp collisions in full phase space and in rapidity intervals accessible at LHC is presented. The main characteristic is the presence of an elbow structure in final charged particle MD's in addition to the shoulder observed at lower c.m. energies.Comment: 9 pages, talk given at Focus on Multiplicity (Bari, Italy, June 2004

    Possible scenarios for soft and semi-hard components structure in central hadron-hadron collisions in the TeV region

    Get PDF
    Possible scenarios in hh collisions in the TeV regions are discussed in full phase space. It is shown that at such high energies one should expect strong KNO scaling violation and a ln(s) increase of the average charged multiplicity of the semi-hard component, resulting in a huge mini-jet production.Comment: 20 pages, 9 PS figures included, LaTeX2e with AMSmath, epsfi

    Scenarios for multiplicity distributions in pp collisions in the TeV energy region

    Full text link
    Possible scenarios based on available experimental data and phenomenological knowledge of the GeV energy region are extended to the TeV energy region in the framework of the weighted superposition mechanism of soft and semi-hard events. KNO scaling violations, forward-backward multiplicity correlations, Hq vs. q oscillations and shoulder structures are discussed.Comment: 10 pages, 10 figures, talk given at "Focus on Multiplicity" (Bari, Italy, June 2004

    Power series distributions in clan structure analysis: new observables in strong interactions

    Get PDF
    We present a new thermodynamical approach to multiparticle production in high energy hadronic interactions, making use of the formalism of infinitely divisible power series distributions. This approach allows us to define new observables, linked to the system fugacity, which characterise different classes of events.Comment: 9 pages, 2 figures, talk presented by R. Ugoccioni at "Correlations and Fluctuations 2002", Crete, Greece, 8-15 June 200

    Forward-backward multiplicity correlations in e+e- annihilation and pp collisions and the weighted superposition mechanism

    Full text link
    Forward-backward multiplicity correlations in symmetric collisions are calculated independently of the detailed form of the corresponding multiplicity distribution. Applications of these calculations to e+e- annihilation and ppbar collisions confirm the existence of the weighted superposition mechanism of different classes of substructures or components. When applied to ppbar collisions in particular, clan concept and its particle leakage from one hemisphere to the opposite one become of fundamental importance. The increase with c.m. energy of the correlation strength as well as the behaviour of the average number of backward particles vs. the number of forward particles are correctly reproduced.Comment: 8 pages, 2 figures, talk presented by A. Giovannini at "Correlations and Fluctuations 2002", Crete, Greece, 8-15 June 200
    corecore